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Diffusion Lattice Boltzmann Scheme on a
Orthorhombic Lattice

R. G. M. van der Sman1 and M. H. Ernst2

Received February 5, 1998

We present a diffusion lattice Boltzmann (DLB) scheme which is derived from
first principles. As opposed to the traditional lattice BGK schemes the DLB is
valid for orthorhombic lattices and it has two eigenvalues of the collision
operator. It is shown that the diffusion coefficient depends only on one eigen-
value of the collision operator. Hence, the DLB scheme can be optimized with
means of the additional eigenvalue of the collision operator and with different
lattice spacing along the principal axes. The properties of the DLB scheme con-
cerning consistency, stability, and accuracy are studied with eigenmode analysis.
This analysis shows that the DLB scheme is consistent with diffusion for a wide
range of diffusion coefficients, it has unconditional stability, and that it has
third-order accuracy. Furthermore, it is shown that accuracy is improved by
setting the additional eigenvalue to zero and by densifying the lattice spacing
along the direction of the density gradient.
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INTRODUCTION

The Lattice Boltzmann scheme is a recently developed technique for
modelling physical transport phenomena.(1) The algorithm is quite simple
and is derived from basic physical principles. Because of its simple nature
it is frequently and successfully used for modelling complex phenomena
such as hydrodynamics, multi-phase flow, natural convection and reaction
diffusion.(2�6) As the method is relatively new, most studies are done with
high symmetry lattices, such as the cubic and square lattice. However
engineering problems may demand the use of less symmetric lattices. On
this problem little study is performed. We investigate this problem by
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studying the Lattice Boltzmann scheme for isotropic diffusion on a
orthorhombic lattice, which has different lattice spacing in the three
orthogonal directions.

Diffusion has seldom been the prime focus of studies on LB
schemes, (7) though it is a simple phenomenon speaking from both a mathe-
matical and numerical point of view. Isotropic diffusion in a homogeneous
medium is mathematically described by the following elliptic partial dif-
ferential equation:

�t \g=D{2\g (1)

with \g the diffusing physical quantity and D the diffusion coefficient. The
solution of elliptical partial differential equations poses little problems for
conventional numerical methods.(8) It is conceivable that this is also the
case for Lattice Boltzmann schemes. Hence, diffusion is an ideal problem for
detailed theoretical analysis of the LB scheme and investigations directed
towards generalisation and optimisation of the method. Furthermore we
expect that improvements of the Lattice Boltzmann technique found for
diffusion can lead to new directions for LB schemes for the more complex
phenomena as fluid flow.

In order to find all possible degrees of freedom, which can be used for
improving the LB scheme, we construct the DLB scheme from first prin-
ciples, i.e., the conservation laws and lattice symmetry requirements. The
properties of the DLB scheme concerning consistency, stability and accuracy
are analysed in terms of eigenmodes.(9, 10) Using the eigenmode analysis we
investigate ways of improving the performance of the DLB scheme using its
extra degrees of freedom.

LATTICE BOLTZMANN SCHEME

Lattice Boltzmann equation

The general formulation of the Lattice Boltzmann scheme, can be
written as cf. ref. 1:

gi (x+ci 2t, t+2t)= gi (x, t)+0ij[ geq
j (x, t)& gj (x, t)]=Aij g j (x, t) (2)

where the distribution function gi (x, t) represents the number of particles
on lattice site x at time t, moving with velocity ci . The velocities are chosen
such that at the next time step t+2t the particles move to neighbouring
sites x+2xi , i.e., ci=2x i �2t. geq

i is the equilibrium particle distribution
function, and 0ij is a relaxation matrix. The matrix elements A ij are the
transition rates between states associated with a particular velocity ci . This
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formulation of the LB scheme, Eq. (2), is also known as the enhanced colli-
sions LB scheme.(1)

The standard requirements(11) for any LB collision operator are (1)
the transition rates are normalised, which guarantees that the collisions are
conserving the number of particles and (2) the collision operator must
allow a collision invariant equilibrium distribution geq

i . These requirements
impose:

:
i

Aij=1 (3)

:
j

Aij geq
j = geq

i (4)

Macroscopic parameters are derived from the moments of the particle
distribution. For diffusion the number density is sufficient for describing the
physical problem. The number density is the number of particles summed
over all states i:

\g(x, t)=:
i

gi (x, t) (5)

Symmetries

In order to have the Lattice Boltzmann equation describe the desired
physical phenomena the lattice and the collision operator should have
certain symmetries, cq. Invariance's. In case of isotropic diffusion the con-
straints are:

(i) The collision operator is invariant under all isometries of the
Bravais lattice.

(ii) Second rank tensors are isotropic.

The constraint (ii) guarantees that the diffusivity tensor D:; is
isotropic, i.e., reduces to D$:; . The standard definitions, Eqs. (3)�(4), com-
bined with constraint (ii) impose the following conditions on geq

i :(12)

:
i

geq
i =\g (6)

:
i

ci, : geq
i =0 (7)

:
i

ci, :ci, ; geq
i =\g c2

s $:; (8)
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Fig. 1. The six-velocity orthorhombic lattice.

The constant c2
s is related to the metric of the Bravais lattice. For fluid flow

problems it is identified as the speed of sound of the lattice gas. For diffu-
sion problems it has no direct physical meaning.

Investigation of the conditions Eqs. (6)�(8) shows that they are
satisfied when using a lattice with principal axes having two-fold rotation
symmetry. Thus in three dimensions the lattice gas can reside on an
orthorhombic lattice with lattice spacing, 2x:=c: 2t, which are in general
unequal. Each lattice site has six states corresponding with the velocity vectors
connected to the six nearest neighbour sites, defined as ci=&ci+3=c: . The
orthorhombic lattice and its associated particles velocities are drawn in
Fig. 1.

The equilibrium distribution satisfying Eqs. (6)�(8), is a weighted
function of the number density: geq

i =wi\g . The weight functions are given
by:

wi=
c2

s

2c2
i

, with
1
c2

s

=:
i

1
2c2

i

(9)

Collision Matrix

The most general collision matrix Aij , taking into account the two-fold
rotation symmetry of the orthorhombic lattice, has the form:
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A=\
A11 A12 A13 B11 A12 A13

+ (10)

A21 A22 A23 A21 B22 A23

A31 A32 A33 A31 A32 B33

B11 A12 A13 A11 A12 A13

A21 B22 A23 A21 A22 A23

A31 A32 B33 A31 A32 A33

Note that the collision matrix is in general not symmetric, i.e. A:;{A;: .
The collision matrix is fully characterised by its eigenvalues +: and

eigenvectors v:, i , where the right and left eigenvectors are respectively
defined as:

:
j

Aijwjva, j=+awiva, i (11)

:
i

va, iA ij=+a va, i (12)

Using this definition we can construct the eigenvectors following ref. 13.
The first eigenvector follows directly from the standard requirements,

Eqs. (3)�(4), which are satisfied if there exists an eigenvector with

+0=1; v0, i=1 (13)

This is the so called density mode eigenvector, the left eigenvector is com-
monly denoted as (1|. The density follows from projecting the state vector
gi onto the eigenvector, meaning \=(1 | g) .

Next there exist three eigenvectors (v: | of odd parity under inversion
of all velocities (ci � &ci). These so-called flux modes can be related to
Cartesian components of the gradient in the number density �:\t(v: | g).
In order to have an isotropic diffusion the corresponding eigenvalues must
be equal (3-fold degenerate):

+:=*; v:, i=ei, : (14)

where ei, :=ci, : �|ci, : |.
The remaining two eigenvectors have even parity under velocity inver-

sion, and can be related to second order derivatives of the number density.
The corresponding eigenvalues must be equal (2-fold degeneracy) to
guarantee isotropic diffusion, requiring:

+:+;=}; v:+;, i=e2
i, :&e2

i, ; , with ;{: (15)

All eigenvectors and corresponding eigenvalues are listed in Table I.
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Table I. Eigenvectors va and Eigenvalues of the
DLB Scheme +DLB

a and Lattice BGK Scheme +BGK
a

a va +DLB
a +BGK

a

0 (1 1 1 1 1 1| 1 1
1 (1 0 0 &1 0 0| * 1&|
2 (0 1 0 0 &1 0| * 1&|
3 (0 0 1 0 0 &1| * 1&|
4 (1 &1 0 1 &1 0| } 1&|
5 (0 1 &1 0 1 &1| } 1&|

The collision matrix can now be formulated when imposing the above
stated symmetry requirements for the eigenvalues. It is readily seen that the
two-fold symmetry of the lattice and the standard requirements Eqs.
(3)�(4) are satisfied when the collision matrix meets the detailed balance
condition:

Aij wj=Ajiwi (16)

Note that this condition implies that the transformed matrix Mij=
1�- wi Aij - wj is symmetric, which is similar to the collision matrix for a
cubic lattice.

After some lengthy, but straightforward algebra using the eigenvalue
equations, one finds the expressions for the components of the collision
operator:

A::=w:(1&})+(1�2)(}+*) (17)

A;:=w:(1&}), with :{; (18)

B::=w:(1&})+(1�2)(}&*) (19)

We have now formulated the diffusion Lattice Boltzmann (DLB)
scheme starting from first principles. The DLB scheme has two degrees of
freedom and is valid on lattices with only two-fold symmetry, which holds
for the orthorhombic lattice in three dimensions. The DLB scheme has an
extra degree of freedom over the Lattice BGK scheme, traditionally
used.(14) The DLB scheme becomes equal to the BGK scheme when setting
*=}=1&|. For comparison we have also listed the set of eigenvectors
and eigenvalues for the BGK scheme in Table I.
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For the BGK scheme the Lattice Boltzmann equation, Eq. (2), is
written as:

gi (x+ci 2t, t+2t)= gi (x, t)+|[ geq
i (x, t)& gi (x, t)] (20)

In order to be consistent with existing literature we use below 1&| instead
of * for the eigenvalues of the flux modes.

EIGENMODE ANALYSIS

Eigenmodes

Having constructed the diffusion Lattice Boltzmann diffusion scheme
with a collision operator Aij satisfying all required symmetry properties,
we now determine the properties concerning consistency, stability and
accuracy by analyzing the LB equation Eq. (2) in terms of eigenmodes.(9)

This approach is very similar to the traditional von Neumann stability
analysis of numerical schemes.

Assuming an unbounded or periodic lattice, the eigenmodes of the
Lattice Boltzmann equation are given by:

gi (x, t)= g~ i (k, s) exp(st+ik } x) (21)

Here s=s(k) is the relaxation rate of the eigenmode. Substitution of the
ansatz Eq. (21) into the LB equation Eq. (2) leads to the eigenvalue equa-
tion:

exp(&ik } 2xi) Aij g~ j (k, s)=exp(s(k) 2t) g~ i (k, s) (22)

From the spectrum of the eigenvalues +(k)=exp(s(k) 2t), information
about the consistency, stability and accuracy can be deduced. The number
of eigenmodes of the LB equation is equal to the number of states at a
lattice site. As LB schemes satisfy conservation laws, the eigenmodes can be
divided in slow modes, related to conservation laws, and kinetic modes,
which usually decay rapidly.(9, 10) As diffusion is only concerned with con-
servation of mass, the DLB scheme has only one slow diffusive mode. The
scheme will show diffusive behaviour if the relaxation rate of the diffusive
eigenmode holds is significantly slower than those of the kinetic modes.

The LB scheme is consistent with diffusion if for the dominant (dif-
fusive) eigenmode holds that Re(s(k))t&k2 and Im(s(k))=0. Then the
time evolution of the number density will be:

\g(x, t)=:
i

g i (x, t)=\0 exp(&Dk2t) exp(ik } x) (23)
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as follows from the Laplace transformation of Eq. (1). The diffusion coef-
ficient D depends on the eigenvalues of the collision operator Aij and will
be derived below with means of the perturbation analysis of the eigenvalue
equation.

General Properties

The properties of the LB scheme are discussed using a simple case, for
which there exists an analytical solutions of the eigenvalue problem Eq. (22).
The case we studied is that of a Lattice BGK scheme applied to a cubic lat-
tice for eigenmodes having wavevectors equal to k=k(1, 1, 1). The corre-
sponding eigenvalue equation is solved using the algebraic manipulation
software package MapleTM:

+0, 1(k)=(1& 1
2|) cos(k)\[(1& 1

2 |)2 cos2(k)+(|&1)]1�2 (24)

+2, 3(k)=(1&|) exp(+ik) (25)

+4, 5(k)=(1&|) exp(&ik) (26)

The properties of the LB scheme following from the spectra of the
eigenmodes, are shown in Fig. 2, and also hold for more general cases and
even for hydrodynamic LB schemes.(10) These properties are:

v The LB scheme has one single diffusive mode which for small k
behaves as ln(+0(k))=&Dk2. It is dominant over the kinetic modes for a
wide range of wavelengths k in the range of 1�|�2.

v The LB scheme is unconditionally stable, i.e., |Re(+a(k))|�1 holds
for all eigenmodes.

v In the range of 0�|�1 the diffusive behaviour of the scheme is
limited. At relatively large wavelength the diffusive mode becomes mixed
with a kinetic mode.

v In the range of | � 2, the diffusive mode is not dominant over all
kinetic modes. Consequently the LB will show spurious oscillations, due to
slowly damped (oscillating) kinetic modes, i.e., Re(+a(k)) � &1 and
Im(+a(k){0).

Take note that these properties hold only for unbounded or periodic lattices.
For finite lattices the found results will be valid for the inner part of the
lattice, near and at the boundaries the effects of the boundary conditions
become significant. Sharp gradients at the boundaries induce instabilities or
spurious modes, which cannot be captured with this eigenmodes analysis.
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Fig. 2. The spectra of eigenmodes of a Lattice BGK scheme for |=0.25, 0.75, 1.25 and 1.75
applied on a cubic lattice, with 2xi=1. The wave vector of the eigenmode is k=(k, k, k). The
thick solid line is the spectrum of the eigenvalue +0 of the diffusive mode. The dashed line
is the spectrum of eigenvalue +1 . The other spectra are shown as thin solid lines. Observe
that the diffusive mode in the top half of the figure becomes a propagating kinetic mode at
finite k.
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Perturbation Analysis

As diffusive behaviour is obtained in the long wave length regime
(k<1), we can determine the accuracy of the LB scheme by expanding the
eigenvalue equation Eq. (22) in powers of the wave vector k cf. ref. 9.
Furthermore this perturbation analysis gives us the relation between the
diffusion coefficient and the eigenvalues of the collision operator.

In this analysis we apply the wave-vector expansion for the particle
distribution g~ i and the relaxation rate s:

g~ i (k)= g~ (0)
i +ikg~ (1)

i +(ik)2 g~ (2)
i +O(k3) (27)

s(k)=(ik) s1+(ik)2 s2+(ik)3 s3+O(k4) (28)

The particle distribution function is expanded as a series of perturbations
g~ (n)

i of the equilibrium distribution g~ (0)
i = geq

i . As there are no propagation
modes for the diffusion problem, the eigenvalue s(k) is an even function of
the wave number, i.e., s1=0 and s3=0.

After substitution of the expansions, Eq. (27)�(28), in the eigenvalue
equation Eq. (22) and performing a Taylor expansion, we obtain

ikg~ (1)
i (k)=&

ik } 2xi

|
wi\(k) (29)

(ik)2 g~ (2)
i (k)=&

1
} \

1
|

&
1
2+ [(ik } 2xi)

2&(ik)2 2x2
s ] w i\(k) (30)

where 2x2
s =c2

s 2t2. For s2 we find

s2=c2
s \1

|
&

1
2+ (31)

so the relaxation rate of the diffusive mode is st &k2D+O(k4). The diffu-
sion LB scheme is accurate up to the third order of the wave number k. The
expression for the diffusion coefficient in Eq. (31), i.e., D=c2

s (1�|&1�2) 2t,
is identical to the one for the Lattice BGK scheme on a cubic lattice.(7)

It depends only on the eigenvalue of the flux modes. The effects of the dif-
ferent lattice spacing are totally absorbed in the constant c2

s .

OPTIMIZATION OF THE DLB SCHEME

Free Parameter }

As is shown above the diffusion coefficient is only dependent on the
eigenvalue of the flux modes 1&|. This means that the eigenvalue } of the
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collision operator can be used for optimization of the consistency and
accuracy of the LB scheme.

An obvious choice for the free parameter } is to set it to zero, such that
the associated kinetic modes will die out immediately.(1, 10) It is expected that
this choice of }=0 will lead to improved diffusive behaviour. We have
checked this hypothesis numerically by comparing the spectra of the eigen-
modes for the DLB scheme with those for the Lattice BGK scheme. We have
computed the spectra for k=(k, 0, 0) and for four values of the relaxation
parameter | with results shown in figure.

In the right part of the figure the ratio between the computed value of
the relaxation rate and the theoretical value (s(k)=&Dk2) is shown.
Deviation of this ratio from 1 means deviation from diffusive behaviour.
As such from Fig. 3 one can observe that the DLB scheme has improved
diffusive behaviour over the BGK scheme, as for |�3�4 the relaxation
rate s(k)=&Dk2 for a larger range of wavelengths. From the left part of
Fig. 3 one can see that spurious oscillations occur with the BGK scheme,
but have vanished with the DLB scheme, as for all eigenmodes Im(s(k))=0
in the range of |�3�4. It must be noted that the elimination of spurious
oscillations occurs only for certain directions of the wave-vector. If k=
(k, k, k) the flux modes will show oscillating behaviour, which is not
eliminated by setting }=0.

Lattice Spacing

Another way of improving the diffusive behaviour of the LB scheme is
to increase the number of lattice sites along the direction of the density
gradient {\g . We show this by computing the spectra of the DLB scheme
(with }=0) for different lattice spacing along the direction of wave vector
k=(k, 0, 0). We have set 2x=1�2, 1, and 2, 2y=2z=1. The computed
spectra argue shown in Fig. 4. Again we have plotted the ratio of the com-
puted value and the theoretical value of the relaxation rate of the diffusive
mode as a function of the wave number, for |=1.25 and |=1.75. This
ratio is about 1 for a larger range of wavenumbers for 2x=1�2 especially
for high |. Consequently the deviation from pure diffusive behaviour is
smallest for 2x=1�2.

Hence, if there is prior knowledge about the gradients in the density
field, the metrics of the lattice can be optimised for that particular case. The
lattice should be densified along the direction of the gradient. On the other
hand the lattice can be stretched along the opposite directions, such that
the total number of lattice sites can be kept limited.
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Fig. 3. The eigenmode spectra of the BGK scheme (dashed lines) and the DLB scheme
(solid lines) for |=0.25, 0.75, 1.25 and 1.75 applied on a cubic lattice with 2xi=1. The
wavevector of the eigenmode is k=(k, 0, 0). In the left part of the figure the ratio of the real
part of the relaxation coefficient of the diffusive mode Re(s) and the theoretical dispersion
relation D=&Dk2 is shown. In the right part the imaginary part of the eigenvalue Im(+) for
all eigenmodes are shown.
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Fig. 4. The ratio of the real part of the relaxation rate of the diffusive mode Re(s(k)) with
the theoretical value &Dk2, as a function of the normalized wavenumber k2x. The wave
vectpr of the eigenmode is k=(k, 0, 0). Lattice spacings in are 2x=1�2 (solid lines), 1
(dashed lines), 2 (points) and 2y=2z=1.

DISCUSSION

A diffusion Lattice Boltzmann (DLB) scheme is constructed from first
principles, i.e., lattice symmetry requirements and the conservation laws.
Isotropic diffusive behaviour is obtainable with orthorhombic lattices with
six particle velocities. The collision operator of the DLB scheme has two
eigenvalues, of which only one is related to the diffusion coefficient. The
other eigenvalue can be chosen freely and is used for improving the perfor-
mance of the DLB scheme.

The procedure of constructing of the DLB scheme from first principles
can equally well be applied to other phenomena such as convection-diffu-
sion and hydrodynamics. The Lattice-BGK schemes currently used for
convection diffusion and hydrodynamics, can be made more general, as
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indicated by the existence of a hydrodynamic LB scheme for 2-D rectangu-
lar lattices with nine velocities, (2) and by the two-parameter LB scheme for
hydrodynamics.(10)

The eigenmode analysis is a valuable tool for analysing the properties
of the DLB schemes concerning consistency, stability and accuracy. The
properties of the diffusion DLB scheme are:

v The behaviour of the DLB scheme is consistent with diffusion for a
wide range of | and wave number k.

v The validity of the DLB scheme is poor for 0<|<1.
v The validity of the DLB scheme for |r2 is limited to low wave

numbers. Sharp gradients as occur near boundary conditions will lead to
spurious oscillations.

v The DLB scheme is unconditionally stable.

v The DLB scheme has at least second order accuracy.

v By setting free eigenvalues (}) to zero, both the range of consistency
with diffusion and the damping of spurious oscillations are improved.

v The diffusive behaviour of the DLB scheme is improved if the lattice
spacing is densified along the direction of the gradient.

These properties the DLB scheme hold also for hydrodynamic LB
schemes(10) and probably for LB schemes in general.

Recent studies have recognised that LB schemes are a special dis-
cretization of the classical Boltzmann equation.(15, 16) They show that other
discretization schemes, as employed by the Finite Difference method, and
non-regular lattice spacing may equally well be applied with LB schemes.
The construction procedure and the method of analysis presented in this
paper can be valuable tools for investigation of the properties of such new
schemes. It may be worthwhile to perform this investigation first for diffu-
sion, as this is the simplest phenomenon that can be modelled with LB
schemes while the findings probably also hold for more complex
phenomena as hydrodynamics.
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